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ABSTRACT

Instruction-guided text-to-speech (ITTS) enables users to control
speech generation through natural language prompts, offering a
more intuitive interface than traditional TTS. However, the align-
ment between user style instructions and listener perception remains
largely unexplored. This work first presents a perceptual analysis
of ITTS controllability across two expressive dimensions (adverbs
of degree and graded emotion intensity) and collects human ratings
on speaker age and word-level emphasis attributes. To compre-
hensively reveal the instruction-perception gap, we provide a data
collection with large-scale human evaluations, named Expressive
VOice Control (E-VOC) corpus. Furthermore, we reveal that (1)
gpt-4o-mini-tts is the most reliable ITTS model with great align-
ment between instruction and generated utterances across acoustic
dimensions. (2) The 5 analyzed ITTS systems tend to generate
Adult voices even when the instructions ask to use child or elderly
voices. (3) Fine-grained control remains a major challenge, indicat-
ing that most ITTS systems have substantial room for improvement
in interpreting slightly different attribute instructions.

Index Terms— Text-to-speech, Instruction-following, Paralin-
guistic dynamic, Human perception, Subjective evaluation

1. INTRODUCTION

Instruction-guided text-to-speech (ITTS) [1,2] enables users to steer
speech synthesis using natural-language prompts (e.g., “read this
joyfully” or “speak like a child”). This approach offers a trans-
parent and flexible alternative to conventional TTS pipelines [3, 4]
that often require low-level acoustic controls or specialized labels
for prosody and timing. By shifting control to free-form language,
ITTS promises to enhance accessibility for content creation, assis-
tive technologies, education, and interactive media.

Reliable evaluation is essential for deploying ITTS systems in
practical applications. Traditional metrics like Mean Opinion Score
(MOS) [5–7] assess naturalness and Word Error Rate (WER) [8]
measure intelligibility, but these metrics fall short in measuring in-
structional fidelity, the precise alignment of synthesized speech with
fine-grained user prompts. This gap raises a central question: Do
natural-language instructions for ITTS systems reliably align with
listener perceptions, particularly for slightly different attributes
like graded emotion intensity?

To address this question, we introduce a novel evaluation of
ITTS controllability. Our study is the first to incorporate adverbs
of degree (e.g., slightly, extremely) and graded emotion intensity
(e.g., ecstatic, happy) as explicit evaluation dimensions. We also
present the first large-scale collection of human perceptual ratings
for speaker age and word-level emphasis. To systematically exam-
ine the gap between instructions and listener perception across these
dimensions, we developed a new analysis framework and compiled

the Expressive VOice Control (E-VOC) corpus1, consisting of high-
quality judgments from over 165 human raters. To ensure the relia-
bility of our findings and enable reproducibility, all data were gath-
ered through a quality-controlled process, and we will publicly re-
lease both the corpus and the analysis pipeline.

2. RELATED WORKS AND BACKGROUND

2.1. ITTS Systems and Selection

The field of Instruction-guided Text-to-Speech (ITTS) has seen rapid
advancement, with many models capable of generating speech from
descriptive prompts [1]. Although robust systems such as Audiobox
[9] exist, their closed-source nature limits transparency and repro-
ducibility, which are essential for this study. Therefore, to ensure a
comprehensive and replicable analysis, we selected five represen-
tative models across three distinct categories. First, to represent
the state-of-the-art in open-source research, we included Parler-TTS
[10] and PromptTTS++ [11]. These models are publicly available,
allowing for the in-depth analysis required for this study. Second,
to represent the leading edge of commercial ITTS systems, we in-
corporate GPT-4o-mini-TTS [12]. Its efficient and high-quality API
provides an insightful analysis for production-grade expressive syn-
thesis. Finally, to test the capabilities of non-specialized systems, we
included UniAudio [13], a unified audio generative model. Its inclu-
sion allows us to assess whether a general-purpose audio foundation
model can achieve perceptual alignment comparable to others.

2.2. ITTS Evaluation Methods

Prior work has established evaluation methodologies that measure
controllability and instruction alignment to evaluate the performance
of ITTS systems. These approaches can be broadly grouped into
three main categories.
(1) Attribute-based objective measures. Several studies evaluate
ITTS by classifying acoustic or stylistic attributes of the generated
speech and comparing them to the prompt. For example, PromptTTS
and PromptTTS 2 [10, 11] measured accuracy in controlling gender,
pitch, speed, and volume. Building on this idea, our work also in-
cludes objective analyses of pitch, speaking rate, and loudness, as
they provide interpretable measures of control precision.
(2) Embedding-based similarity measures. Other works adopt em-
bedding models to quantify alignment between prompts and audio
outputs. For example, AudioBox [9] proposed using Joint-CLAP to
correlate audio-text embeddings with human judgments of style rele-
vance, while Emosphere [14] utilized emotion2vec [15] embeddings
to evaluate emotion similarity.
(3) Instruction-following perceptual measures. A third line of
work directly involves human listeners or automated judges to rate
how well synthesized speech matches a textual instruction. This
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category can be divided into two main approaches: (i) Human-
Centered Evaluation: This approach treats human perception as
the ground truth. For example, InstructTTS [13] introduced a Rel-
evance MOS (RMOS) to score overall prompt alignment, while
VoxInstruct [16] used a similar Mean Opinion Score for Instruction
(MOS-I). Other studies, like EmoVoice [17], have focused more
narrowly, collecting listener ratings on specific dimensions such as
overall expressiveness. (ii) Automated Evaluation: Recent studies
have developed automated methods to increase scalability and re-
duce cost. SpeechCraft [18], for instance, fine-tuned classifiers to
predict attributes like speaker age and word-level emphasis, and used
the classifiers to measure how well these predictions aligned with
the original instructions. Pushing this further, InstructTTSEval [19]
benchmarked ITTS systems using Gemini [20], which evaluated
alignment across various prompts, from low-level acoustic details to
high-level role-play instructions.

While these methods are essential for assessing general align-
ment, they mostly provide coarse outcomes such as overall relevance
scores or discrete category matches (e.g., age or emotion class). In
contrast, our work directly measures perceptual controllability along
graded and expressive dimensions, including adverbs of degree, fine
levels of emotional intensity. Also, prior works on age and emphasis
evaluation have only applied automated methods. However, classi-
fier predictions are tied to their training data and may inherit dataset
biases, making them unreliable indicators of how listeners actually
perceive expressive attributes. In contrast, our study conducts large-
scale human evaluations, providing direct perceptual evidence.

3. EVALUATION FRAMEWORK

We designed a comprehensive evaluation framework to investigate
the instruction-perception gap in ITTS systematically. This frame-
work consists of 3 core components: the control dimensions that
define the evaluation tasks (Section 3.1), the evaluation metrics used
to quantify alignment (Section 3.2), and the E-VOC corpus of human
perceptual data collected to support the analysis (Section 3.3).

3.1. Control Dimension
To comprehensively evaluate ITTS controllability, we define 4 con-
trol dimensions that serve as the tasks in our study. These are
grouped into two categories: two novel dimensions designed to
measure fine-grained expressivity, and 2 established dimensions that
assess fundamental aspects of speech synthesis.

3.1.1. Proposed Control Dimensions

The following two dimensions are our primary contribution to eval-
uating the fine-grained control capabilities of ITTS systems.

Table 1: Adjectives used in the prompt to control the style of gener-
ated speech by ITTS systems for the Emotion–Intensity Adjective di-
mension. The higher the number in the Level row, the higher the de-
gree. Intensity is the emotional intensity of the adjective from [21].

Level 1 2 3 4 5

Happy Satisfied Content Happy Overjoyed Ecstatic
Intensity 0.500 0.688 0.788 0.909 0.954

Sad Gloomy Disappointed Unhappy Sad Heartbroken
Intensity 0.578 0.636 0.750 0.864 0.969

Angry Upset Frustrated Irritated Angry Outraged
Intensity 0.439 0.636 0.706 0.824 0.964

Surprised Intrigued Unexpected Amazed Stunned Surprised
Intensity 0.430 0.711 0.781 0.820 0.930

Task I. Adverbs of Degree (Adv. Deg.) tests whether models fol-
low degree modifiers such as “slightly,” “very,” and “extremely” to
adjust prosody (loudness, pitch, speaking rate) and emotion. This di-
mension is important because adverbial scaling provides users with
a simple way to control the fine-grained prosodic variation, essential
for storytelling and emotional expression.
Task II. Emotion–Intensity Adjective (Emo-I.A.) evaluates whether
ITTS systems can express different degrees of the same emotion,
using adjectives that represent progressively stronger intensities. For
4 core emotions (happy, sad, angry; surprise), we selected candidate
adjectives from the human-annotated NRC Emotion Intensity Lex-
icon [21]. We filtered the candidates to include words that appear
frequently in common use (at least 1,200 times on Wikipedia [22]).
These adjectives were then arranged into sequences of increasing
intensity (Table 1), such as Satisfied, Content, Happy, Overjoyed;
Ecstatic for the “happy” category. This task evaluates whether
models can transform these ordered adjective sequences into corre-
sponding perceptual scales of emotion intensity as judged by human
listeners.

3.1.2. Other Control Dimensions

In addition to our proposed dimensions, we include the following
established tasks to provide a more holistic evaluation of the capa-
bilities of the ITTS models.
Task III. Speaker Age (Age) evaluates a model’s ability to syn-
thesize a voice that reflects a specific perceived age group. We de-
fine four distinct categories: Child (ages 4-12), Teenager (ages 13-
19), Adult (ages 20-64), and Elderly (ages 65+). Since vocal cues
change systematically throughout a person’s life, accurately repro-
ducing them is essential for practical applications, such as entertain-
ment and education.
Task IV. Word-level Emphasis (Emphasis) assesses the ability to
place prosodic prominence on a specific target word within a sen-
tence using cues like pitch excursion and duration. Precise emphasis
control is critical for mirroring natural human speech patterns and
allows systems to draw listener attention to important information
and preserve the original communicative intent.

3.2. Evaluation Metrics
Our framework combines objective acoustic analysis with subjective
human perceptual judgments to create a comprehensive evaluation.

3.2.1. Objective Measures

For the Adv. Deg. task, we use objective metrics to quantify changes
in the physical properties of the generated speech. Loudness is mea-
sured in Loudness Units relative to Full Scale (LUFS), following the
ITU-R BS.1770-4 standard. Pitch is calculated as the mean fun-
damental frequency (F0) per utterance, estimated using the CREPE
model [23]. Speaking rate is measured in words per second across
the entire utterance.

Table 2: The table summarizes details of the E-VOC across 4 tasks.
# means the number. Cohen’s kappa is for inter-rater agreement.

Task Adv. Deg. Emo–I.A. Emphasis Age

# of Utterances 2,880 3,600 1,440 720
# of Ratings 17,482 29,295 10,811 3,597
# of Workers 29 59 27 10

Ratings/Utterance 6.1 8.1 7.5 5.0

# of Check Utterances 39 39 64 30
Cohen’s kappa 0.170 0.226 0.410 0.439
Performance 0.898 0.832 0.411 0.590
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Fig. 1: Loudness (LUFS), pitch (Hz), and speaking rate (words/s) across ITTS models for Task I. Adverbs of Degree.
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Fig. 2: Averaged perceptual emotion intensity of ITTS models across 4 emotions (e.g., Angry, Happy, Surprised; Sad), analyzed by Task
I. Adverbs of Degree (top row) and Task II. Emotion–Intensity Adjective (bottom row). The figure shared the same legend with Figure 1.

3.2.2. Subjective Measures

For dimensions requiring stylistic and semantic interpretation, we
rely on human perceptual ratings. Emotion Intensity: For both the
Adverbs of Degree and Emotion-Intensity Adjectives tasks, listeners
rate the perceived intensity of the target emotion on a 5-point Lik-
ert scale. Emphasis: Listeners use a forced-choice task to identify
the most prominent word in an utterance. The options include ev-
ery word in the sentence, plus an “Unclear” option. Age: Listeners
determine the speaker’s perceived age by selecting from a forced-
choice list: Child, Teenage, Adult, Elderly, or Unclear}.

3.3. Human Annotation Collection & the E-VOC dataset

To facilitate our human evaluation, we created the E-VOC corpus.
We generated the audio stimuli for this corpus using five represen-
tative ITTS systems: Parler-TTS-large-v1 (Parler-large) [10, 24],
Parler-TTS-mini-v1 (Parler-mini) [10, 24], PromptTTS++ [11]
(Prompt++), UniAudio [13], and gpt-4o-mini-tts (gpt-4o) [25].

3.3.1. Transcripts Generation

The generation process combined neutral transcripts with specific
style prompts. We first created eight conversational transcripts
for everyday contexts (e.g., teacher-student, customer-server) us-
ing Gemini 2.5 Pro [20]. We then paired these transcripts with

prompts designed for each control dimension. For acoustic con-
trols, prompts combined adverbs and adjectives (e.g., “Speak in
a Very High tone”). For the Emo-I.A., prompts used intensity-
specific adjectives (e.g., “Speak in an Ecstatic tone”). For Empha-
sis, prompts specified the exact word to be stressed (e.g., “Articulate
clearly, placing special stress on the term ’Sundays’”). For Age,
prompts requested a specific age group (e.g., “Use a Child’s voice”).

3.3.2. Annotation and Quality Control

We recruited native English speakers from the United States via the
Prolific platform. All participants completed a brief training session
before starting the main annotation task. To ensure the reliability
of our data, we implemented a rigorous quality control protocol.
We embedded check utterances with gold-standard labels sourced
from public corpora, including CREMA-D [26] (for emotion inten-
sity), EMNS (for emphasis), and Nexdata.ai [27]/CREMA-D [26]
(for age). We only retained ratings from annotators who demon-
strated high accuracy in these check items. Finally, we report two
key reliability metrics in Table 2: Inter-Rater Agreement, measured
using Cohen’s Kappa on the check items, and Worker Performance,
defined as the percentage of check utterances that each annotator la-
beled correctly. At least 5 workers annotate every utterance.



Table 3: This table summarizes model performance on the Age and
Emphasis tasks. Overall performance is reported using accuracy,
while class-specific results for the Age task are reported using F1-
scores. The best performance in each category is indicated in bold.

ITTS gpt-4o Parler-large Parler-mini Prompt++ UniAudio

Task (Metric) Age (Accuracy)

Overall 0.289 0.294 0.227 0.246 0.211

Task (Metric) Age - Class-wise Analysis (F1-score)

Child 0.074 0.113 0.021 0.000 0.049
Teenager 0.292 0.326 0.149 0.127 0.148

Adult 0.402 0.410 0.337 0.330 0.281
Elderly 0.053 0.142 0.199 0.310 0.339

Task (Metric) Emphasis (Accuracy)

Overall 0.265 0.152 0.134 0.130 0.040

4. EXPERIMENTAL RESULTS AND ANALYSES
4.1. Adverbs of Degree

As shown in Figure 1, gpt-4o provides the clearest and most con-
sistent mapping from degree adverbs to acoustic features. Figure 2
(top row) extends this analysis to perceived emotion intensity under
adverb cues.
Loudness. gpt-4o spans a wide LUFS range with a predictable or-
dering from “slightly” to “extremely.” In contrast, both Parler models
show limited variation; PromptTTS++ is nearly flat, and UniAudio
remains significantly calmer overall.
Pitch. gpt-4o effectively separates “high” and “low” instructions
into distinct F0 bands. Other systems exhibit smaller, irregular sep-
arations, with degree steps that often compress or overlap.
Speaking Rate. gpt-4o again covers the broadest range with a log-
ical progression from “extremely slow” to “extremely fast,” while
other models show minimal or inconsistent changes.
Emotion. Once again, gpt-4o demonstrates strong, consistent gra-
dation within each emotion, with listeners rating “extremely” and
“very” prompts as more intense than “slightly.” The other systems
show weaker separation and even occasional reversals.

Overall, gpt-4o is the only model that reliably translates degree
modifiers into both the intended acoustic shifts and the correspond-
ing perceptual changes based on our experimental settings.

4.2. Emotion–Intensity Adjectives

gpt-4o was the only system to demonstrate reliable control over
graded emotional intensity across all four emotion categories (Fig-
ure 2, bottom row) in this task. For instance, listener ratings for
gpt-4o increased smoothly along the Happy graded emotion words
(from “Satisfied” to “Ecstatic”) and the Surprised ones (from “In-
trigued” to “Surprised”).

Table 4: Confusion matrices for gpt-4o on Age task. Rows are sys-
tem outputs (Labels), columns are human judgments. Rows indicate
the system-predicted labels, and columns show the categories cho-
sen by human annotators. Higher values on the diagonal represent
better alignment between instructions and perception.

Labels Human

Child Teenager Adult Elderly

Child 7 51 121 1
Teenager 0 46 133 1
Adult 0 28 150 2
Elderly 2 10 163 5

Other models show weaker distinctions. Parler-large and Parler-
mini captured some variation, but the perceptual steps between ad-
jacent adjectives were small. PromptTTS++ often produced nearly
indistinguishable outputs across terms, while UniAudio occasionally
exhibited reversed trends, with listeners rating mid-level adjectives
as more intense than stronger ones. Overall, most ITTS systems can
generate distinct categorical emotions, but only gpt-4o reliably con-
trols fine-grained emotion intensity.

4.3. Speaker Age
The Age control task was challenging for all systems, with low over-
all accuracies reported in Table 3. Parler-large and gpt-4o achieved
the highest scores, but only achieved accuracies of 0.294 and 0.289,
respectively. Class-wise F1-score in Table 3 indicates that all mod-
els reproduce adult or teenager speech most reliably, while child
and elderly voices are much harder to generate. In particular, gpt-
4o achieves the strongest recognition for teenage and adult prompts,
whereas UniAudio and Prompt++ perform relatively better for el-
derly prompts. The generation of a child voice was particularly chal-
lenging, with extremely low F1-scores across all systems.

Analysis of the gpt-4o confusion matrix (Table 4) further reveals
a strong bias: regardless of the prompt, listeners most often per-
ceived the output as adult. This finding suggests that current ITTS
models gravitate toward a default adult-like voice with limited con-
trol over other age categories.

4.4. Word-level Emphasis
Controlling word-level emphasis was a significant challenge for five
ITTS systems. As shown in Table 3, gpt-4o achieved the highest ac-
curacy, yet its score of 0.265 indicates that even the best-performing
model struggled. Since each sentence contained 6 candidate words
on average, random guessing would yield an expected accuracy of
only 1/7 ≈ 0.143, including the option ”no word emphasized”. This
task highlights a critical area for improvement, as effective empha-
sis requires precise and consistent coordination of pitch excursion,
duration, and intensity at the word level.

5. CONCLUSION AND FUTURE WORK

Conclusion. This work addresses the largely unexplored link be-
tween natural-language instructions and listener perception in ITTS.
We proposed a novel framework for evaluating fine-grained control
using adverbs of degree (e.g., “slightly happy”) and ordered emo-
tional adjectives (e.g., from “Content” to “Happy” to “Ecstatic”).
Analysis of five leading ITTS models revealed two key patterns:
(1) Among the systems tested, gpt-4o was the only one that reliably
translated degree modifiers and graded adjectives into perceptually
ordered changes in loudness, pitch, speaking rate, and emotion inten-
sity. (2) Fine-grained controls like word-level emphasis and speaker
age were inconsistently realized across all models. Most ITTS sys-
tems defaulted to adult-like voices and produced weak emphasis
cues. To sum up, while current ITTS can follow some high-level
styles with coarse reliability, achieving consistent and fine-grained
alignment with human perception remains an open challenge.
Future Work. Our large-scale E-VOC corpus, with its 60,000+
human ratings, provides a valuable resource for developing auto-
mated evaluation systems. A promising future direction is to use
this dataset to train and validate Spoken Language Models (SLMs)
like Gemini as reliable [20], scalable proxies for human perceptual
judgments. Developing such an automated judge would significantly
accelerate ITTS research by enabling faster and more reproducible
evaluation cycles [19, 28].



6. REFERENCES

[1] Dongchao Yang, Songxiang Liu, Rongjie Huang, Chao Weng,
and Helen Meng, “Instructtts: Modelling expressive tts in
discrete latent space with natural language style prompt,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 32, pp. 2913–2925, 2024.

[2] Zhihao Du et al., “Cosyvoice 3: Towards in-the-wild speech
generation via scaling-up and post-training,” 2025.

[3] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao,
and Tie-Yan Liu, “FastSpeech 2: Fast and High-Quality End-
to-End Text to Speech,” in International Conference on Learn-
ing Representations, 2021.

[4] Edresson Casanova, Julian Weber, Christopher D Shulby, Ar-
naldo Candido Junior, Eren Gölge, and Moacir A Ponti,
“YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-
Shot Voice Conversion for Everyone,” in Proceedings of the
39th International Conference on Machine Learning, Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, Eds. 17–23 Jul 2022, vol. 162 of
Proceedings of Machine Learning Research, PMLR.

[5] Chen-Chou Lo, Szu-Wei Fu, Wen-Chin Huang, Xin Wang, Ju-
nichi Yamagishi, Yu Tsao, and Hsin-Min Wang, “MOSNet:
Deep Learning-Based Objective Assessment for Voice Conver-
sion,” in Interspeech 2019, 2019, pp. 1541–1545.

[6] Gabriel Mittag et al., “NISQA: A Deep CNN-Self-Attention
Model for Multidimensional Speech Quality Prediction with
Crowdsourced Datasets,” in Interspeech 2021, 2021.

[7] Wenze Ren, Yi-Cheng Lin, Wen-Chin Huang, Ryandhimas E.
Zezario, Szu-Wei Fu, Sung-Feng Huang, Erica Cooper, Haibin
Wu, Hung-Yu Wei, Hsin-Min Wang, Hung yi Lee, and
Yu Tsao, “HighRateMOS: Sampling-Rate Aware Modeling for
Speech Quality Assessment,” 2025.

[8] Kenichi Arai, Shoko Araki, Atsunori Ogawa, Keisuke Ki-
noshita, Tomohiro Nakatani, Katsuhiko Yamamoto, and Toshio
Irino, “Predicting speech intelligibility of enhanced speech us-
ing phone accuracy of dnn-based asr system,” in Interspeech
2019, 2019, pp. 4275–4279.

[9] Apoorv Vyas et al., “Audiobox: Unified Audio Generation
with Natural Language Prompts,” 2023.

[10] Dan Lyth and Simon King, “Natural language guidance of
high-fidelity text-to-speech with synthetic annotations,” 2024.

[11] Reo Shimizu et al., “PromptTTS++: Controlling Speaker
Identity in Prompt-Based Text-To-Speech Using Natural Lan-
guage Descriptions,” in ICASSP 2024 - 2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2024, pp. 12672–12676.

[12] OpenAI, “Introducing next-generation audio models in the
API,” March 2025.

[13] Dongchao Yang et al., “UniAudio: An Audio Foundation
Model Toward Universal Audio Generation,” 2024.

[14] Deok-Hyeon Cho, Hyung-Seok Oh, Seung-Bin Kim, and
Seong-Whan Lee, “EmoSphere++: Emotion-Controllable
Zero-Shot Text-to-Speech Via Emotion-Adaptive Spherical
Vector,” IEEE Transactions on Affective Computing, vol. 16,
no. 3, pp. 2365–2380, 2025.

[15] Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao Li, Zhifu
Gao, ShiLiang Zhang, and Xie Chen, “emotion2vec: Self-
Supervised Pre-Training for Speech Emotion Representation,”
in Findings of the Association for Computational Linguistics:
ACL 2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
Eds., Bangkok, Thailand, Aug. 2024, pp. 15747–15760, Asso-
ciation for Computational Linguistics.

[16] Yixuan Zhou, Xiaoyu Qin, Zeyu Jin, Shuoyi Zhou, Shun Lei,
Songtao Zhou, Zhiyong Wu, and Jia Jia, “VoxInstruct: Ex-
pressive Human Instruction-to-Speech Generation with Uni-
fied Multilingual Codec Language Modelling,” in Proceed-
ings of the 32nd ACM International Conference on Multime-
dia, New York, NY, USA, 2024, MM ’24, p. 554–563, Associ-
ation for Computing Machinery.

[17] Guanrou Yang, Chen Yang, Qian Chen, Ziyang Ma, Wenxi
Chen, Wen Wang, Tianrui Wang, Yifan Yang, Zhikang Niu,
Wenrui Liu, Fan Yu, Zhihao Du, Zhifu Gao, ShiLiang Zhang,
and Xie Chen, “EmoVoice: LLM-based Emotional Text-To-
Speech Model with Freestyle Text Prompting,” 2025.

[18] Zeyu Jin, Jia Jia, Qixin Wang, Kehan Li, Shuoyi Zhou, Songtao
Zhou, Xiaoyu Qin, and Zhiyong Wu, “SpeechCraft: A Fine-
Grained Expressive Speech Dataset with Natural Language
Description,” in Proceedings of the 32nd ACM International
Conference on Multimedia, New York, NY, USA, 2024, MM
’24, p. 1255–1264, Association for Computing Machinery.

[19] Kexin Huang, Qian Tu, Liwei Fan, Chenchen Yang, Dong
Zhang, et al., “InstructTTSEval: Benchmarking Complex
Natural-Language Instruction Following in Text-to-Speech
Systems,” 2025.

[20] Gheorghe Comanici et al., “Gemini 2.5: Pushing the Frontier
with Advanced Reasoning, Multimodality, Long Context, and
Next Generation Agentic Capabilities,” 2025.

[21] Saif Mohammad, “Word Affect Intensities,” in Proceedings of
the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan, May 2018, Eu-
ropean Language Resources Association (ELRA).

[22] The Wikipedia contributors, “English Wikipedia database
dump,” Available: https://dumps.wikimedia.org/
enwiki/20230413/, 2023, Accessed: Apr. 3, 2025.

[23] Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo
Bello, “Crepe: A Convolutional Representation for Pitch Esti-
mation,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2018, pp. 161–165.

[24] Yoach Lacombe, Vaibhav Srivastav, and Sanchit Gandhi,
“Parler-TTS,” https://github.com/huggingface/
parler-tts, 2024.

[25] OpenAI, “GPT-4o mini TTS,” Text-to-Speech Model Docu-
mentation, 2025, Version accessed on March 4, 2025.

[26] Houwei Cao, David G. Cooper, Michael K. Keutmann,
Ruben C. Gur, Ani Nenkova, and Ragini Verma, “CREMA-D:
Crowd-Sourced Emotional Multimodal Actors Dataset,” IEEE
Transactions on Affective Computing, vol. 5, no. 4, pp. 377–
390, 2014.

[27] NEXDATA AI, “50.5 Hours — English (America)
Children Scripted Monologue Microphone Speech
Dataset,” https://www.nexdata.ai/datasets/
speechrecog/75?source=Github, 2025.

[28] Cheng-Han Chiang, Xiaofei Wang, et al., “Audio-Aware Large
Language Models as Judges for Speaking Styles,” 2025.

https://dumps.wikimedia.org/enwiki/20230413/
https://dumps.wikimedia.org/enwiki/20230413/
https://github.com/huggingface/parler-tts
https://github.com/huggingface/parler-tts
https://www.nexdata.ai/datasets/speechrecog/75?source=Github
https://www.nexdata.ai/datasets/speechrecog/75?source=Github

	 Introduction
	 Related works and Background
	 ITTS Systems and Selection
	 ITTS Evaluation Methods

	 Evaluation Framework
	 Control Dimension
	 Proposed Control Dimensions
	 Other Control Dimensions

	 Evaluation Metrics
	 Objective Measures
	 Subjective Measures

	 Human Annotation Collection & the E-VOC dataset
	 Transcripts Generation
	 Annotation and Quality Control


	 Experimental Results and Analyses
	 Adverbs of Degree
	 Emotion–Intensity Adjectives
	 Speaker Age
	 Word-level Emphasis

	 Conclusion and Future Work
	 References

